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Abstract 

We explore the use of dielectrophoresis to discern the electrical properties of 

single cells by observing them at multiple frequencies. We first simulate 

experimental conditions to show that as we increase the number of measured 

frequencies, we are able to better discriminate among different cells. 

Furthermore, we use the simulation to find the optimal number and value of 

frequencies to use to best discriminate among different cells in general. We then 

fabricate a microfluidic device, calibrate it with polystyrene beads, and 

characterize it with BA/F3 cells. With this device, we test three different activation 

levels of HL60 cells treated with Cytochalasin D using the optimal frequency 

sequence obtained in simulation to determine the differences in discrimination 

abilities depending on the number of frequencies used. We quantify the 

discrimination abilities of the optimal one, two, and three frequencies by 

minimizing 0-1 loss.  

 

  



Introduction 
 

Cell-based assays in microfluidics are of significant importance, being 

employed for basic science as well as the diagnosis of disease1. Assays of single 

cells, as opposed to populations, is of particular interest given the widespread 

understanding of population heterogeneity and the importance of rare cells2. One 

class of single cell-based assays are those that are label-free, giving them the 

advantage of being able to measure cellular phenotype or separate cells based 

on those phenotypes without altering the cell via labeling with dye, antibody, etc.3 

Label-free assays include measurements of cell size, optical properties 4 acoustic 

properties5, and mechanical properties6,7,8. In particular, one popular class of 

label-free cell-based assay examines cells’ electrical properties. 

There currently are three central methods of analyzing single cells by 

their electrical properties: electrorotation, impedance cytometry, and 

dielectrophoresis8,9,10. Each method has tradeoffs in their throughput and 

specificity (based on the depth of analysis of each cell). Electrorotation uses a 

rotating electric field to induce the rotation of a particle as a result of electrical 

torque, where the torque and thus the rotational velocity depends on the 

electrical properties of the particle11,12. Measurement of the rotational velocity 

thus allows estimation of the electrical properties of cells. Electrorotation has 

been extended to allow for analysis of hundreds of cells at once13. However, 

acquiring a full spectrum for a single cell takes around 30 minutes10,14,15, which 

lowers throughput.  



In comparison to electrorotation, microfluidic impedance cytometry is 

generally higher throughput16,17. It involves the continuous flow of cells through a 

channel where electrodes record cell impedance, often at to two frequencies18. 

The utility of impedance cytometry is well exemplified in work by Morgan and 

colleagues, where impedance cytometry was used to perform a 3-part differential 

white blood cell count with a throughput of about 1000 cells per second17. 

However, when not combined with other methods, such as optics and 

fluorescence19, it is typically limited the two frequencies per single cell16.       

 Dielectrophoretic methods for discriminating single cells tend to have 

throughputs lower than impedance cytometry but higher than electrorotation18. 

Dielectrophoretic methods apply a non-uniform electric field to induce a 

translational dielectrophoretic force on a cell. Sometimes the measurement 

involves a force balance between a dielectrophoretic force and a fluidic drag 

force, yielding an observable balance position that maps a cell position to its 

Clausius-Mossotti (CM) factor20,21,22,23. In 2013 we introduced the DEP spring, in 

which a dielectrophoretic force induced by coplanar electrodes exerts a force that 

is balanced by fluid drag, resulting in a well-defined balance position23. We used 

this approach to analyze cells on a single cell basis under continuous-flow. 

Balance positions were obtained for thousands of single cells at a given 

frequency and solution conductivity. These balance positions yielded estimates 

of the CM factors of cells. Unfortunately, the method only allowed for measuring 

a single frequency for each cell, limiting the depth of analysis. 



Here we extend the DEP spring to measure multiple frequencies. 

Measurement at different frequencies allows investigation of the frequency-

dependent electrical phenotype of the cells, as the measurements are obtained 

at frequencies that probe different parts of the cell. We call this new method the 

multi-frequency DEP spring. We first use stochastic simulations to understand 

how increasing the number of measured frequencies increases the ability to 

discriminate cells. Then, informed by the simulations, we develop and 

characterize the multi-frequency DEP spring and show its utility in characterizing 

cells exposed to cytoskeletal inhibitors. 

 

  



Results 

We first undertook simulations to understand how measuring multiple 

frequencies affects cell discrimination ability and what frequencies are optimal for 

discriminating cells. In practical experiments, one could only observe cells at a 

discrete and limited set of frequencies, providing incomplete information as to the 

cells’ electrical properties. Therefore, we used simulations to test a large set of 

frequencies to indicate which subset of frequencies we should use during 

experiments. Given a single-shell model of a mammalian cell, considering the 

cytoplasm and the membrane as separate compartments, there were five 

dielectric parameters that identified a cell: cytoplasm permittivity and conductivity, 

membrane permittivity and conductivity, and radius. We could thus completely 

describe this model via perfect measurements of the CM factor at five 

independent frequencies24. However, all measurements had associated 

uncertainty, and high frequencies, which provided information as to the 

cytoplasmic compartment, are challenging to access. We thus wanted to 

determine which measurement frequencies (and how many) provided the most 

information about a cell when measured with some uncertainty. 

Simulation 

We used a Monte Carlo simulation to create a set of cells whose 

properties are drawn from a distribution of cell electrical properties using 



continuous distributions of parameters in the single-shell model of a cell. These 

parameters were cell radius, cytoplasmic conductivity and permittivity, membrane 

(shell) conductivity, permittivity and thickness, and medium properties. We used 

uniform distributions of parameters across a range informed by literature (Table 

1). In our model we fixed the shell thickness, due to the known thickness of the 

plasma membrane’s phospholipid bilayer, as well as the medium conductivity 

and permittivity.  

The underlying method of the simulation first created cells drawn from a 

distribution of properties and simulates their CM factors based on those 

properties (Supplemental Figure S1A). It then determined the optimal frequency 

that would differentiate the most cells from one another under some assumption 

of the uncertainty of the measurement (Supplemental Figure S1A). In our case 

we estimated the position uncertainty based on experimental balance position 

measurements. In the simulations, we sought to find the number of cells 

remaining within a set tolerance in CM factor dependent on predicted balance 

position (Supplemental Figure S1E) at a given frequency. The chosen frequency 

with the fewest cells remaining was chosen as the best first frequency. Then, 

using that first frequency, the algorithm searched for the best second frequency 

(Supplemental Figure S1B). This approach continued until including further 

frequencies did not further narrow the number of cells (Supplemental Figure 

S1C,D).  

As shown in Figure 1, this simulation was executed for two frequency 

ranges to determine whether experimental limitations affected the optimal choice 



of frequencies. In one case we simulated a large frequency range (10 kHz to 1 

GHz), while in the second case we narrowed to the range explored 

experimentally (500 kHz to 25 MHz).  

Comparing the two ranges (Figure 1A, E), we could see that the Re[CM] 

spectrum had two dispersions in the wider frequency range (Figure 1A) and only 

one in the narrower experimentally accessible range (Figure 1E), consistent with 

the known general location of the higher-frequency dispersion. Fewer dispersions 

indicated that there was more independent information in the wider frequency 

range than in the narrower range. Examining how increasing numbers of test 

frequencies narrows the fraction of cells remaining in the wide experimental 

range (Figure 1C-D), we saw that the ability to discern cells improves as we 

increased from one to four different frequencies in the sequence. In particular, 

measuring at one frequency (optimally chosen to be 50 MHz, Figure 1D), left 

11% of cells on average; increasing to two frequencies left only 3% of cells 

remaining, while four frequencies narrowed down to 0.5% of cells (Figure 1D). 

Adjusting the balance position uncertainty affected the number of frequencies 

above which no further discrimination occurs, as expected (Supplemental 

Figures S2-S3). 

 



 

Figure 1: Monte Carlo simulation results for measurements across a wide (A-D) 
and narrow (E-H) frequency range. (A, E) Re[CM] factors for one simulation of 
1000 randomly generated cell models. (B,F) Fraction of cells remaining in the 
threshold after balance positions at  various frequencies are measured across 
100 simulations. (C, G) Fraction of cells remaining as balance positions are 
measured at an increasing number of frequencies (+ = mean, o = median). (D, H) 
Mean fraction of cells remaining as a function of which frequency is tested, as 
balance positions at increasing numbers of frequencies are measured (denoted 
by the number next to each line). Results for each additional frequency (2 to 4) 
are predicated on choosing the best prior frequency. 
 

Examining the particular optimal frequencies chosen in the wide 

frequency range, frequencies around the second dispersion were more 

informative than lower frequencies as the frequencies around the second 

dispersion had the high variability in CM (Figure 1A) and the balance position 

was strongly sensitive to Re[CM] when Re[CM] was close to zero (Figure S1E). 

After that, the optimal frequencies were around the first dispersion as CM factor 



spectra around the second dispersion were already narrowed down from the first 

optimal frequency. The fourth frequency only provided 0.3% additional 

discrimination ability, and the particular choice of frequency value was not very 

sensitive (0.05% change in fraction of cells remaining across the frequency 

range). 

Turning to the narrower, more easily accessible experimental range 

(Figure 1E-H), we saw a similar decrease in the fraction of cells remaining as 

additional frequencies were measured (Figure 1G). Consistent with the wide 

frequency range, the optimal first frequency was the highest-accessible 

frequency, in this case 25 MHz. We also saw that the ability to discriminate 

saturated at ~4% cells remaining after 3 frequencies, worse than in the wider 

frequency range, because not all cell properties were accessible at the lower 

frequency range. In particular, the third frequency choice was not critical; there 

was a 0.1% variation in the fraction of cells remaining across the frequency 

range.  

We chose an optimal frequency sequence to use for experiments by 

observing which frequency sequence was most commonly found to be the 

optimal three-frequency combination in our simulations across the experimental 

range. Based on these results, the optimal frequency combination was 1.2 MHz, 

2 MHz, and 25 MHz, which were the frequencies used for experiments. Since the 

simulation was run 100 times, the optimal three-frequency combination varied for 

different simulation runs. For this reason, average optimal frequencies for each 



numbered frequency (1-4) in Figure 1D,H differ from the optimal frequency 

combination found. 

Multi-frequency DEP Spring 

 Experiments were run using a microfluidic DEP spring23 device consisting 

of a PDMS channel atop a glass substrate containing coplanar electrodes (Figure 

2). Cells flowed through the channel and experience a negative DEP force when 

they encountered two angled electrodes on the floor of the chamber (Figure 2A, 

Supplemental Movie). This DEP force was counteracted by the fluid drag force. 

When these forces were of equal magnitude, the cell would reach a balance 

position, which was dependent on the applied frequency, the Re[CM] factor of 

the cells, cell size, electric field intensity, etc. The balance position is given by: 

𝛿 =  𝑞𝑅−1 �
3𝜂𝑠𝑖𝑛𝜃� 6𝑄𝑤ℎ3(ℎ−𝑅)�

𝑅𝜀𝑚𝑅𝑒[𝐶𝑀]𝑉𝑅𝑀𝑆
2𝑝(𝑓, 𝜎𝑚)

� (ref. 23) 

where 𝑞𝑅−1  reflects the dependence of the DEP force on position, η is the 

medium viscosity, θ is the angle between the electrodes and the fluid flow in the 

channel, w is the channel width, h is channel height, R is the cell radius, 𝜀𝑚is the 

medium permittivity, 𝑉𝑅𝑀𝑆 is the root-mean-square voltage across the electrodes, 

and 𝑝(𝑓,𝜎𝑚) a normalization factor that corrects for any drop at the electrode 

solution interface within the channel that depends on frequency and media 

conductivity 𝜎𝑚.   



 

Figure 2: Multi-frequency DEP spring overview. (A) Schematic of the channel 
with slanted electrodes. (B) Schematic of a single cell experiencing the DEP 
spring at multiple frequencies (f1, f2, and f3) at different points in time, where they 
experience a balance between the y-directed DEP force (FDEP,y) and the y-directed 
drag force (FDrag,y) and arrive at balance positions δ1, δ2, and δ3, respectively. In 
this instantiation three frequencies repeat. The center of the electrodes defines 
the origin of the y-axis.  
 

In the multi-frequency DEP spring, the frequencies changed according to 

a predetermined sequence (shown as f1, f2, f3, f1, etc. in Figure 2B), which 

changed the balance position by changing the Re[CM]. The cells attained the 

new balance position with some settling time. By visually tracking the cells across 

the field of view (Figure 2B) and correlating the image stack timestamps to the 



frequency sequence timestamps, we could correlate balance position to applied 

frequency.   

 

BA/F3 Balance Position Verification  

To validate the ability to measure balance positions at multiple 

frequencies and understand the limits of the measurements, we undertook 

experiments with BA/F3 cells. Cells were subjected to sequences of 

measurement frequencies and their positions were measured (Figure 3). We 

defined a valid balance position if the cell stayed within 10% of the average 

difference in balance positions between one frequency and the next frequency in 

the final 250 milliseconds at a given frequency. If this criterion was met, the 

balance position was defined to be the final distance measurement from the 

center of the electrodes at a given frequency. 

 

 



 

Figure 3: (A) Overlaid measured trajectories of 23 BA/F3 cells, along with the 
frequency the cells are experiencing as a function in time (bold orange). The 
bolded green trajectory is an example of a cell that properly attains all three 
balance positions. The bolded red trajectory is an example of a cell that does not 
properly attain all three balance positions. The black circles indicate validated 
balance positions while the black X shows an invalidated balance position. The 
vertical dashed lines indicate transitions in frequency where balance positions 
are measured. (B) Fraction of valid balance positions measured as the overall 
time for the frequency sequence changes. 
 

 Figure 3A shows, among several other cell trajectories, an example of a 

cell trajectory that properly attained all three balance positions and an example of 

a cell trajectory that did not do so. The frequency sequence used was 25 MHz for 

1300 ms, followed by 1.2 MHz for 1800 ms, followed by 2 MHz for 700 ms, and 

then repeated. Due to the similarity in balance positions between 1.2 MHz and 2 

MHz, this transition took less time and could afford a shorter duration at 2 MHz. 

The differences in balance positions between 25 MHz and 1.2 MHz were the 

largest, causing 1.2 MHz to necessitate the longest duration. We found that 

~63% of cells properly attained all three balance positions, while the remainder 



failed to properly attain at least one of three balance positions. We then 

computationally examined how decreasing the time at each frequency would 

affect the fraction of cells that attain valid balance positions (Figure 3B); note that 

this metric differs from the fraction of cells unable to be discriminated referred to 

in Figure 1. As expected, decreasing the total frequency sequence duration from 

3.8 s to 3.05 s decreased the fraction of valid balance positions to 40%. 

However, decreasing the duration would allow more balance positions to be 

measured, assuming camera field of view and flow rate would be kept constant. 

Overall, then, we found that we were able to reliably measure three frequencies, 

with the ability to increase the number of measured frequencies, if desired, by 

altering experimental parameters. 

 

Cell Discrimination 

 Finally, we sought to apply the multifrequency DEP spring to the problem 

of distinguishing closely related cell states. In particular, we measured the 

electrical properties of HL60 cells under exposure to different concentrations of 

Cytochalasin D (CytoD), a drug that blocks actin cytoskeleton polymerization. We 

chose this treatment to examine whether the known effects of the drug on 

deformability also translated to any changes in electrical properties. 

We measured multifrequency balance positions of 262 cells exposed to 

two concentrations of CytoD (along with control). To avoid any nonspecific 

changes due to changes in the cell size, we adjusted for the cell size variations 



(measured optically) using Eqn 1. In addition, we adjusted for any frequency 

dependence in the applied field (due to electrode polarization or lead inductance) 

by making control measurements with polystyrene beads (Supplemental Figure 

S4), and using those balance positions to compensate. Figure 4A presents 

scatter plots of the measurements. We saw that as cells are treated with 

increasing concentrations of CytoD, their size-corrected population-average 

balance positions increased in a dose-dependent manner (Figure 4B), consistent 

with an increase in the nDEP force and suggesting a concomitant increase in 

Re[CM]. 

 

Figure 4: (A): Balance positions for 262 HL60 cells across treatment condition 
and frequency (+ = mean, o = median). (B): Balance position means at all three 
frequencies separated by treatment condition.  (C): Discrimination accuracies as 
the number of measured frequencies changes. The yellow bars signify 



classification into one of three possible classes whereas the other colors signify 
classification into one of two possible classes.  
 

To explore the utility of measuring multiple frequencies for distinguishing 

cells, we trained a 0-1 loss classifier to discriminate between the cells given the 

three derived Re[CM] factors for each cell. We see in Figure 4C that the 

discrimination ability when classifying between two populations or among three 

populations improved when increasing the number of frequencies at which we 

measured balance positions. We also observe that, as expected, it was easiest 

to distinguish control from 10 µM CytoD. Furthermore, all twelve discrimination 

accuracies shown correspond to statistically significant discriminations with 

paired sample t-test p-values for each ranging from as high as 0.0012 to as low 

as 3.8e-14 (p < 0.05 is significant). 

 
  

Discussion 

 Our goal in introducing the multi-frequency DEP spring was to obtain 

more information about cells’ electrical properties while maintaining throughput. 

We showed in our simulations that the wider the frequency range is and the more 

dispersions it has, the more frequencies become useful in discriminating cells. 

We then defined a metric for assessing the transition from frequency to 

frequency using BA/F3 cells in order to experimentally ascertain cell balance 



positions, yielding CM factor values at certain frequencies. Finally, we used three 

frequencies on single HL60 cells of three different subpopulations to show that as 

more frequencies are employed to identify the HL60 cells, discrimination 

accuracy increases.  

Considering the simulation we were able to find an optimal number of 

frequencies to use given both an experimental range and a wider theoretical 

range. For the former, we observed that three frequencies maximized the 

information provided, while in the wider range of frequencies, four frequencies 

substantially increases information. From a theoretical standpoint, we can credit 

this to being able to access the higher-frequency dispersion in the Re[CM] 

spectrum with the wider frequency range than the experimental range. From a 

physical standpoint, we can state that a wider range of frequencies will reach a 

wider range of compartments and their electrical parameters24. In both cases, the 

precision of the measurements (uncertainty in balance position, in this case) 

affected the ability to discriminate cells. Currently, the balance position 

uncertainty does not limit the ability to discriminate cells. 

 When we consider which frequencies in the experimental range to use, 

the results consistently indicate that a frequency high in the range and a 

frequency low in the range should be included. This is not surprising given that in 

the single-cell model the high frequencies probe different parameters than the 

low frequencies. However, the particular optimal frequencies varied with each 

simulation run, as expected for a stochastic model.  



 Results with Cytochalasin-treated cells highlight the improved information 

content derived when measuring cells at multiple frequencies. Here we see 

increasing accuracy with increasing number of frequencies, regardless of the 

comparison set. Although we focused experimentally on measuring 3 

frequencies, informed by the simulation results, it might be useful experimentally 

to measure cells at additional frequencies. This is because cells’ electrical 

properties do not necessarily follow the single-shell model exactly. The upper 

bound on the number of balance positions that one can measure are based on 

the flowrate and the imaging field-of-view. Decreasing flow rate would increase 

the residence time and thus the ability to measure additional frequencies, though 

it could also increase the time needed to achieve a particular balance position. 

Increasing the microscope field-of-view would also increase the number of 

frequencies that could be measured, although typically with a tradeoff in spatial 

resolution and thus potentially increased uncertainty in the balance position.  

 On the topic of uncertainty, one can observe that measuring cells of the 

same population with our device can produce noticeably different balance 

positions. Although true biophysical differences among cells within the same 

population would yield different balance positions, measurement error also plays 

a role in adding uncertainty to the balance position measurement. Causes of 

measurement error include variations in channel height along the length of the 

channel within the field of view causing an unintended x-axis dependence of 

balance position, as well as variations in the electrodes producing the electric 

field acting on the cells. Improved control of such factors would help to increase 



discrimination accuracy. In addition, one can leverage repeated observations of 

the cell as it traverses the field of view to develop a better estimate of the 

balance position.  

The same device was used for all experiments mentioned. This allowed 

us to maintain relatively constant device properties, such as channel width, 

channel height, and electric field at a given frequency, across experiments. 

These device properties are factors in determining the CM factors of the cells 

traveling through the device channel and can vary from device to device if 

separate devices are not fabricated in exactly the same manner. Therefore, using 

separate devices for the same experiment would add uncertainty to our results.  

 Comparing this method to other methods of discriminating single cells by 

their electrical properties, we find that our throughput (up to ~1 cell/sec) exceeds 

that of electrorotation, where the typical maximum throughput is ~5 cells/hr14,15, 

which is considerably lower than our maximum throughput, although the depth of 

analysis is greater (~20 frequencies/cell11). Regarding impedance cytometry, we 

see that the throughput is much higher (~1000 cells/sec), but the typical 

maximum number of frequencies per cell is two, while we’ve shown our method 

yielding three data points per cell in the form of balance positions, and this can 

be easily increased. Finally, comparing to other DEP-based electrical cell 

measurement techniques, most single-cell DEP methods measure cell properties 

at a single frequency20; we’ve shown utility in measuring more frequencies per 

cell as a means of increasing cell discrimination ability.  



Despite showing utility with our method, we note that our current 

throughput is indeed modest. Several approaches exist to increase throughput, 

such as by increasing cell concentration and using image tracking methods to 

keep track of all of the cells in the field of view. Furthermore, we could increase 

flow rate while also increasing the voltage peak-to-peak amplitude between the 

electrodes to assure balance positions would still be attained. Field strength 

could also be increased, allowing a higher flow rate, by putting electrodes on top 

of the channel as well as on the bottom of the channel, as we have done in other 

work30.  

An important next step in our experimentation would be showing our 

ability to discriminate cells in a mixture. The experiments presented here have 

discriminated cells in pure populations. In order to discriminate within mixed 

populations, we could use a label to provide ground-truth information as to the 

cell identity. As long as cells are far enough apart such that they do not interact 

electrically or hydrodynamically, measuring in mixed populations should be 

straightforward. 

 

Conclusions 

Here we show through simulation and experiments that measuring 

electrical properties of cells at multiple frequencies for single cells increases our 

ability to discriminate them. We first quantify how this ability improves through 



simulation of testing multiple frequencies per cell, improving by showing fewer 

and fewer CM factor spectra within tolerance thresholds as we incrementally 

increase the amount of frequencies per cell from one to four. We then establish 

what it means to successfully attain balance positions when transitioning from 

frequency to frequency within the experimental multi-frequency DEP spring, 

showing that there is a rough limit to how many frequencies can be tested on a 

single cell. Finally, we show consistent increases in accuracy when 

discriminating HL60 cells treated with different concentrations of cytochalasin D 

when increasing from one to two and two to three measured frequencies per cell 

using the optimal frequencies obtained from our simulation.  

 

Materials and Methods 

Simulation 

Simulations were performed using MATLAB 2016a. The Monte Carlo 

simulation of the intrinsic parameters was varied with a uniform distribution 

across the given ranges (Table 1). The simulation was run 100 times with 1000 

simulated cells CM factor spectra per run. For each run, a cell CM factor 

spectrum was chosen at random, and a tolerance in the CM factor was estimated 

based on the experimentally measured balance position uncertainty. We used a 

position uncertainty of 0.5 microns, which was ~2× the standard deviation of the 



noise in the experimentally measured balance positions. When a given frequency 

was tested, certain CM factor spectra would be similar enough at that frequency 

to the chosen CM factor spectrum to remain within the tolerance. However, 

several other CM factor spectra will not. Whichever frequency in the spectrum 

resulted in the fewest neighboring cell CM factor spectra within the CM factor 

tolerance was chosen to be the optimal frequency. That optimal frequency was 

then held constant and the process repeated to select the second optimal 

frequency. Once the second optimal frequency is selected, the first two 

frequencies are held constant and the process repeated to select the third 

optimal frequency, and so on. 

Table 1: The values used for the parameters in the simulations The medium 
properties are held constant as they experimentally controlled. The inner radius 
of the cell is constant relative to the outer radius of the cell, as we assume a 
phospholipid bilayer thickness of 10 nm. 

Parameters Values 

Cytoplasm Conductivity 0.2 𝑆/𝑚 ↔ 1.2 𝑆/𝑚 25,26 

Cytoplasm Permittivity 20 𝜖0  ↔  80 𝜖0 25,26,27 

Membrane Conductivity 10 𝑛𝑆/𝑚 ↔ 1 𝜇𝑆/𝑚 25,26 

Membrane Permittivity 2 𝜖0  ↔  20 𝜖0 25,26,28 

Medium Conductivity 1.5 𝑆/𝑚  

Medium Permittivity 78.5 𝜖0 

Outer Radius 2.0 𝜇𝑚 ↔ 8.0 𝜇𝑚  

Inner Radius 1.99 𝜇𝑚 ↔ 7.99 𝜇𝑚P

29  

 



Device Fabrication 

 The device channel was made with Sylgard 184 PDMS, using a cross-

linker-to-elastomer ratio of 1:10, and cleaned with isopropanol. The Ti/Au device 

electrodes were fabricated on a glass substrate using standard microfabrication 

methods and were cut with a dice saw and cleaned with acetone, methanol, and 

isopropanol. Three holes for input ports and three output ports were punched into 

the PDMS channel device. The device channel was attached to the device 

electrodes using plasma from a Harrick plasma cleaner / sterilizer chamber 

(model PDC-32G), creating a three dimensional channel with the sides and top 

being the PDMS and the bottom being the gold electrodes on the glass 

substrate. 

Cell Culture 

 BA/F3 cells were cultured from frozen stalk at -80 °C. The media used 

was RPMI media with penicillin/streptomycin (1x), fetal bovine serum (20%), and 

L-glutamine (2 mM).  The cells were passaged at a 1:10 ratio every 5 days. HL60 

cells were similarly cultured in DMEM media with penicillin streptomycin (1x), 

bovine calf serum (20%), and L-glutamine (2 mM). Both the BA/F3 and HL60 

cells typically have over 90% viability. 



Bead Preparation 

 10 micron (10.269 ± 0.502 µm)  carboxylate-modified polystyrene beads 

from Polysciences Inc. (Warrington, PA, United States) were prepared for 

experiments by diluting in PBS at a 1:100 ratio.  

Cell and bead experiments 

 Flow was controlled by two Chemyx Fusion 200 syringe pumps. Before 

each experiment, the device was primed with 1% BSA in PBS by passing it 

through the device channel at a flow rate of 20 µ L/min for 30 minutes. 

Meanwhile, 1 mL cells in media were centrifuged down at 1000 RPM for 5 

minutes and the supernatant media was replaced with PBS. PBS was pumped 

through two of the input ports while PBS with cells at the desired concentration 

(106 cells/ml) was pumped through the third input port with a total flow rate of 0.6 

µL/min. This total flow rate is kept constant throughout the entirety of the 

experiment. Images of cells were obtained by a LAVision Imager QE camera 

coupled to a Zeiss Imager.M1m microscope with a 10x objective lens and 

brightfield illumination. Voltages at frequencies less than 15 MHz were applied 

via an Agilent 33220A function generator, while those greater than 15 MHz were 

applied by a TGR1040 RF signal generator and amplified by a TVA-R5-13 RF 

power amplifier. The microscope, the camera, and both function generators had 

automated control from a MATLAB GUI. After the experiment’s end, the device 

was cleaned with PBS at a flow rate of 40 µL/min for 5 minutes, then distilled 



water at a flow rate of 100 µL/min for 1 minute. The device was then purged with 

air for drying for 5 minutes and then stored.  

 

Data Processing 

During each experiment image stacks were collected by the MATLAB 

GUI. The image stacks were used as inputs to a particle detection script which 

outputted detected particles as data structures by means of a time domain 

median image filter and pixel intensity thresholding. The detected particles were 

tracked using a particle tracking script which tracks the particles for the duration 

of time they are in the field of view of the microscope, applies a four-point moving 

average time domain filter to each particle, and defines balance positions as the 

final y-position of a particle at a certain frequency. Validated particles and their 

trajectories were then stored as MATLAB data files for analysis. The validated 

balance positions for different populations were classified by optimizing a weight 

vector through minimizing 0-1 classification loss. After this optimization, the 

discrimination accruacy was calculated via the formula: 

𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐶𝑒𝑙𝑙𝑠 𝑇𝑒𝑠𝑡𝑒𝑑−𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐸𝑟𝑟𝑜𝑟𝑠 𝑀𝑎𝑑𝑒
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐶𝑒𝑙𝑙𝑠 𝑇𝑒𝑠𝑡𝑒𝑑

. 
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